A* 算法简介
A*(AStar)是一个兼具效率和效果的图搜索算法,可用于目标点之间的路径规划。本文将以广度优先搜索为基础,逐步介绍图搜索的基本方法,最后给出 A* 算法及其 MATLAB 实现示例。
A*(AStar)是一个兼具效率和效果的图搜索算法,可用于目标点之间的路径规划。本文将以广度优先搜索为基础,逐步介绍图搜索的基本方法,最后给出 A* 算法及其 MATLAB 实现示例。
Motion Primitive(常译为“运动原语”或“运动基元”)是一种简单高效的轨迹规划算法。在已知系统动力学方程和初始状态下,只需要给定目标状态及其到达时间就可以实现轨迹规划。本文将简要介绍这种算法的理论基础,并以一维的刚体运动为例进行推导。
在进行数据分析时,有时我们会将一系列相关的曲线画到一起进行对比,对于数据存在部分重叠的情况,我们希望临时地将某些曲线隐藏。为了在 MATLAB 中实现这个功能,可以使用 legend
的回调函数。本文将简要讨论这种交互式功能的实现。
系统的频率响应是控制器设计的重要依据之一,在工程上,我们常使用扫频测试来获得系统的幅频响应和相频响应,以构建经验传递函数(Empirical Transfer Functions)。本文将简要讨论系统频率响应的估计算法。
线性时不变系统的稳定性可以通过计算极点、绘制奈奎斯特图或伯德图等多种方式进行判定,对于非线性系统,通常采用李雅普诺夫稳定性判据。本文将简要介绍李雅普诺夫直接法,并介绍实践中常用的引理。
最小二乘法(Least-Squares Method)是一种常用的参数估计方法,本文将介绍最小二乘法的基本原理,并推导其递归形式,讨论时变参数的估计策略。
依据模型完成状态预测器和控制律设计后,控制器结构基本确定,环路性能将由参数决定。在分离原理的加持下,本文首先讨论理想控制环路和状态预测环路的带宽约束,最后给出极点配置的具体实现。